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Abstract

Genomic and other related big data (Big Genomic Data, BGD for short) are ushering a new era of 

precision medicine. This overview discusses whether principles of evidence-based medicine hold 

true for BGD and how they should be operationalized in the current era. Major evidence-based 

medicine principles include the systematic identification, description and analysis of the validity 

and utility of BGD, the combination of individual clinical expertise with individual patient needs 

and preferences, and the focus on obtaining experimental evidence, whenever possible. BGD 

emphasize information of single patients with an overemphasis on N-of-1 trials to personalize 

treatment. However, large-scale comparative population data remain indispensable for meaningful 

translation of BGD personalized information. The impact of BGD on population health depends 

on its ability to affect large segments of the population. While several frameworks have been 

proposed to facilitate and standardize decision making for use of genomic tests, there are new 

caveats that arise from BGD that extend beyond the limitations that were applicable for more 

simple genetic tests. Non-evidence-based use of BGD may be harmful and result in major waste of 

healthcare resources. Randomized controlled trials will continue to be the strongest arbitrator for 

the clinical utility of genomic technologies, including BGD. Research on BGD needs to focus not 

only on finding robust predictive associations (clinical validity) but also more importantly on 

evaluating the balance of health benefits and potential harms (clinical utility), as well as 

implementation challenges. Appropriate features of such useful research on BGD are discussed.

Introduction

The emergence of genomic sequencing technologies and other-omic information (e.g. 

transcriptomics or metabolomics) along with a large amount of digital big data on 

individuals and populations are poised to usher in a new era of precision medicine (1). Very 

large numbers of individuals have or will soon have access to such ‘big genomic data’ 

(BGD). Concurrently, BGD may be coupled also to large-scale information for 

environmental exposures and lifestyle (2). People may use BGD for health-related reasons in 

the context of healthcare delivery or on their own initiative via direct-to-consumer offerings 

(3).
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Several questions arise: Should the principles of evidence-based medicine (EBM) change 

with BGD? Should old hierarchies of evidence be modified with personalized big data? 

What might be realistic expectations for precision health goals? What framework should 

guide decision making on the use of BGD? Do we need randomized controlled trials (RCTs) 

to assess the clinical utility of BGD? Finally, how do we design an evidence-based research 

agenda to maximize utility for BGD? This overview tries to address these questions.

Should the principles of evidence-based medicine change with big 

genomic data?

The term ‘evidence-based’ was introduced (4) to herald the need of ‘…consciously 

anchoring a policy, not to current practices or the beliefs of experts, but to experimental 

evidence… The pertinent evidence must be identified, described, and analyzed’. EBM is 

defined (5) as ‘the conscientious, explicit and judicious use of current best evidence in 

making decisions about the care of individual patients… [It] means integrating individual 

clinical expertise with the best available external clinical evidence from systematic 

research’.

These principles are still relevant in the era of precision medicine. BGD should not be 

viewed as a shortcut for EBM (6). Identifying, describing and analyzing pertinent evidence 

is essential for BGD, as for any type of evidence. The challenge becomes greater as the mass 

of information increases, fragmented across multiple facilities, sites, healthcare systems, 

electronic health record (EHR) systems or personal files of billions of individuals. There 

may be a variable amount of sharing, and variable adoption of plans towards cumulative 

knowledge. The focus on ‘making decisions about …individual patients’ is more important 

than ever, as BGD aims to empower individuals in personalized decisions.

The definition of EBM also includes ‘individual clinical expertise’, while there is 

speculation that BGD may allow health decisions by individuals without involving any 

health practitioner. However, shared decision making involving both a patient and a clinician 

(7) or other specialized interlocutor is more realistic. It is currently unclear who is the best 

genomic interlocutor of the patient/individual (trained clinicians, genetic counselors and 

others) and how best to implement the use of genomic information. A systematic review of 

283 implementation studies for genetic information concludes that there is very weak 

evidence and no solid conclusions (8). The complexity of interpreting genomic information 

(9) makes simplified solutions unrealistic. While the cost of genomic and other-omic 

technologies will continue to decrease, the cost for interpreting genomics and other big data 

may escalate.

Furthermore, the need for systematic evidence synthesis remains strong. Experimental 

evidence may be sparse/nonexistent (as discussed below) and one would then have to decide 

whether other types of evidence can fill the gap.
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Should old hierarchies of evidence be modified?

A fundamental tension is whether BGD disrupt traditional hierarchies of evidence (10). 

Traditional hierarchies place systematic reviews and meta-analyses at the top, followed by 

randomized trials, then observational studies and case reports on single patients and expert 

opinion at the bottom. BGD often emphasize information of single patients under the rubric 

of personalized/precision medicine/health. Emphasis is placed on mechanistic insights from 

single cases (10). Moreover, there are high expectations for N-of-1 trials aiming to identify 

personalized treatments that are guided by BGD.

N-of-1 trials are actually an old concept. There was substantial interest in N-of-1 trials in the 

1980s and 1990s (11,12) and some old hierarchies of evidence had even placed N-of-1 trials 

at the top of the evidence pyramid. Getting reliable information about how to treat 

individuals seemed more attractive than summary average results with unclear relevance for 

any individual. N-of-1 trials, however, have not gained much traction, because they had 

major caveats. Specifically, when sequentially testing different treatment options, insights 

obtained are unreliable when the disease lacks a steady natural history, when there are 

substantial carry-over effects of prior treatment options, when the treatment effect is 

influenced by previous treatment choices and their order, and when the disease has a fatal 

outcome and a relatively short course (13). The most successful applications of N-of-1 trials 

to-date (14) have been for chronic, lifetime diseases like osteo-arthritis, chronic neuropathic 

pain or attention-deficit hyper-activity disorders, where these caveats largely do not exist. 

Even for these conditions, the proportions of participants persisting with the joint patient-

doctor decision 12 months after trial completion were modest (32%, 45% and 70% for the 

three conditions, respectively) (14). Conversely, most of the currently contemplated uses of 

N-of-1 approaches for treatment based on big data of individuals, in particular late-stage 

malignancies, suffer from many of the caveats that diminish the value and reliability of N-

of-1 trials. Inferences may be unreliable in these settings. N-of-1 trials may become most 

useful, if enough big data can be collected to define an unequivocal phenotype and, 

concurrently, a perfectly tailored effective treatment can be found for this phenotype. At 

best, this can be seen as speculative, work in progress, as we discuss below. In the 

meanwhile, large-scale population-level evidence would continue to be indispensable to 

juxtapose individual patient profiles and experiences against such large-scale data. This 

evidence will be most reliable if it has been collected with accurate measurements 

(analytical validity), has shown reproducible associations and effects of interest across 

diverse populations (clinical validity) and has been scrutinized systematically to ensure 

clinical validity without major bias.

What might be realistic expectations for precision health goals?

According to Collins and Varmus (1) precision medicine aims ‘to give everyone the best 

chance at good health’. Healthcare is customized, with medical decisions, practices or 

products tailored to the individual patient. However, EBM also focuses on individual 

patients (5), so is this a new concept? Perhaps the one difference is that EBM has accepted 

that, in order to get best evidence for an individual, one typically needs large-scale data on 

the greater population. Conversely, many proponents of precision medicine believe that 
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amassing large-scale data on a single person would suffice to get the best evidence for 

treating the person. This is a widespread misunderstanding (15).

Given that the individual and the population stand at the two ends of the spectrum, by 

definition, precision medicine, as advocated by many proponents, may have a tiny or 

negligible impact at a population level. For single patients, it may indeed have maximal, 

optimized benefits. However, this hypothetical scenario has to be proven on a case-by-case 

basis. Even if it were true, one would have to expect that many people could reap such major 

personalized benefits, in order to make the precision medicine/population health agenda 

worthwhile. The most common application of BGD to date is in cancer genomics. However, 

in the National Cancer Institute-Molecular Analysis for Therapy Choice (NCI-MATCH) trial 

(16) that screens cancer patients for tumor mutations, only 2.5% of patients match to a 

molecularly individualized treatment. This does not reflect just a difficulty to identify 

precise molecular profiles. Even when molecular profiles can be identified, most often there 

is yet no good treatment to match to them. Moreover, examples where new drugs have been 

approved based primarily on mechanistic knowledge without randomized trials become 

more common; however, they mostly pertain to conditions with negligible population burden 

(e.g. approval of ivacaftor for cystic fibrosis caused by 23 new residual function mutations 

based on the results of functional assays and approval of pembrolizumab for progressive 

metastatic solid tumors with microsatellite instability or mismatch repair deficiency) (17,18).

Similarly, there is ambiguity even about what big data mean (19). Big data typically carry 

minimal useful information content per unit, hence a big amount is needed to make them 

useful for practical purposes. The more insignificant the content of information per unit, the 

bigger the big data required to start having some utility. This is the exact opposite of what 

Bradford Hill, one of the fathers of modern epidemiology, would cherish. He felt confident 

when calculations were possible to repeat on the back of an envelope. For large effects, for 

example association of smoking with lung cancer, 2 × 2 tabulation and calculation of the 

huge odds ratio are doable on the back of an envelope. For complicated, perplexing big data, 

this is impossible. Big data black boxes typically do not inspire confidence. The ability to 

handle a complex, convoluted black box in everyday circumstances is unclear. It is even 

possible that people with greater access to big data eventually have worse outcomes. Some 

big data may confuse, overwhelm and mobilize people in vain to change their lives or seek 

treatment adventures for no good reason. A reliable framework is needed to decide which 

big data should be used.

What framework should guide decision making on the use of big genomic 

data?

The National Academies of Sciences, Engineering, and Medicine report on ‘An Evidence 

Framework for Genetic Testing’ (20) offers a consensus framework for decision making on 

genetic/genomic tests in clinical care. It builds on previous frameworks, including the United 

States Preventive Services Task Force approach for assessing preventive interventions (21); 

the Fryback–Thornbury hierarchy (22); the ACCE (Analytic Validity, Clinical Validity, 

Clinical Utility, and Ethical, Legal, and Social Implications) framework (23); the EGAPP 
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(Evaluation of Genomic Applications in Practice and Prevention) standards (24); the Genetic 

testing Evidence Tracking Tool (GETT) (25); and the Frueh and Quin framework that aims 

to facilitate communication between test developers and health-technology evaluators (26).

Table 1 lists the seven evaluation steps along with some comments on challenges that arise 

on each step. With BGD, the functionality of this framework is unclear. For example, a rapid 

triage step makes sense given the volume of information, but who, when and how would do 

this rapid triage for zillions of emerging big data and related tests is unclear. The ability to 

rapidly triage personalized information is unknown, but preliminary evidence suggests that 

the process can be arduous and even well-trained experts may reach different conclusions 

(9), for example about the degree of pathogenicity of specific genetic variants (27). Even 

with relatively simple genetic tests, guidelines of different organizations and professional 

societies are often disagreeing with each other (28). Repositories of guidelines and other 

BGD-related decisions need to be user-friendly, easy to navigate, unambiguous and 

objective. There is little evidence that any of these features are easy to achieve. Any effort 

may have a better chance of success, if instead of waiting for the retrospective accumulation 

of fragmented published data and scattered publically available resources, there is large-

scale international collaboration with large-scale sharing of evidence and continuous 

updating as more data accrue.

Of the seven steps, the first may be the most important: identifying the clinical problem to 

solve and whether any good alternatives already exist. Past research has typically not 

followed a problem-based approach. Innumerable papers have accumulated in many fields 

without a clear rationale of why this research was done and what the aim was in terms of 

clinical translation. This makes the retrieval and assessment of relevant alternatives difficult. 

In some clinical applications, the number of existing alternatives is already stunningly large. 

For example, there are ongoing efforts to improve prediction with genetic information for 

cardiovascular disease. However, a systematic review found that 363 different predictive 

models already exist for cardiovascular disease (29). None seems to confer a clear 

advantage. As another example, the availability of big data through EHRs allows building 

predictive models with a much larger number of predictors than previous traditional 

predictive models. However, a systematic review of such models shows (30) that their 

discriminating ability remains modest. Starting from the clinical question that needs to be 

answered and getting clinicians more involved is essential to make meaningful progress 

(31). Simply accruing more data and using more automation may even solidify the various 

forms of automation bias (32) without offering a clinical advantage.

Do we need RCTs to assess the clinical utility of big genomic data?

RCTs are a centerpiece of EBM and they will continue to be important also in the BGD era. 

RCTs are not always easy to conduct. Therefore, different types of evidence are also useful 

to consider. Different types of designs may help inform about different clinical questions. 

However, clinical utility would be difficult to establish with high certainty in the absence of 

comparative evidence, and in particular RCTs.
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A recent umbrella review evaluated 21 systematic reviews published between 2010 and 2015 

on clinical applications of genomics (33). The authors found very limited evidence about the 

effect of using genomic tests on health outcomes. The systematic reviews found substantial 

risk of bias, and limited randomized evidence. However, this picture applies mostly to 

technologies and tests that predate the current massive availability of BGD. The questions 

need to be reassessed for new technologies.

One major question is whether genomic information can change behavior. A systematic 

review published in 2016 (34) identified 18 randomized and quasi randomized studies that 

reported on behavioral outcomes, including smoking cessation (six studies; n = 2663), diet 

(seven studies; n = 1784), physical activity (six studies; n = 1704) and less data on alcohol 

use, medication use, sun protection and attendance at screening or behavioral support 

programs. There were no apparent benefits of communicating genetic-based risk estimates 

on smoking cessation (odds ratio 0.92, 95% CI 0.63–1.35), diet (standardized mean 

difference 0.12, 95% CI, −0.00–0.24), physical activity (standardized mean difference 0.03, 

95% CI −0.13–0.08), or anyother behaviors or on motivation to change behavior, and no 

adverse effects, such as depression and anxiety. The evidence was typically of low quality 

and studies were at high or unknown risk of bias. However, most studies used very limited 

genetic information from the candidate gene era. Table 2 summarizes RCTs that have 

assessed newer multigenic predictive score information [i.e. scores made of multiple (≥19) 

common genetic variants] for improving outcomes in various diseases (35–38). The results 

are rather disappointing. Of course, one may retort that even these genetic risk scores still 

used genetic signatures that carried limited information.

Of note, even outside genetics there are no more than a few hundreds of RCTs of diagnostic, 

prognostic, predictive and monitoring tests. A systematic review of 140 such RCTs with 153 

comparisons found significant effectiveness for patient outcomes of only 28 (18%) of them, 

a small minority (39). Similarly, the literature on traditional screening methods shows that 

very few of them have well established roles with strong evidence to support them (40). 

Expectations from big genomics to reverse this picture of ineffectiveness for much of current 

diagnostic and predictive medicine should be cautious. The detrimental consequences of 

testing individuals without clear clinical utility may include increased cost, overdiagnosis, 

further diagnostic and therapeutic waste and eventually worse hard clinical outcomes.

Of course, traditional RCTs do have their own well-known biases, the discussion of which is 

beyond the scope of this paper (reviewed in 41,42). One can avoid most of these biases pre-

emptively with careful design, conduct, analysis and reporting. Moreover, there is a new 

range of trial designs [including Bucket, Basket, Umbrella, Adaptive, and Sequential, 

Multiple Assignment, Randomized Trial (SMART) designs] (reviewed in 43) that can 

incorporate creatively precision information, for example tumor genomic profiles in 

oncology. One may also hybridize design features, for example the NCI-MATCH trial 

discussed above (16), is a Super Umbrella trial, combining features of Bucket and Umbrella 

trials. As of the writing of this paper, all these new trial designs cumulatively represent less 

than 1% of all ongoing oncology RCTs, and are even more uncommon in other fields, but 

broader use should be encouraged.
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How do we design an evidence-based research agenda to maximize utility 

for big genomic data?

Most clinical research done to-date has not been useful (44), because clinical utility was 

never a top consideration. This also applies to BGD and may also apply to future efforts 

unless clinical utility becomes a key objective. One of us has previously proposed eight 

major features of useful clinical research (44). First, a solid problem must exist that needs to 

be solved, rather than create a problem that does not exist and add confusion with collecting 

irrelevant, massive BGD information. Second, context placement needs to ascertain what is 

already known on the question of interest based on previous BGD or other relevant data. 

Third, future studies need to be designed aiming for maximizing information gain, 

regardless of what their results might be. Fourth, pragmatism must ensure that the results 

apply to real life, while collection and interpretation of some types of BGD may not be 

straightforward outside research settings. Reliable, pragmatic action may be more important 

than the exact process of dissecting complex information. In some cases, a pragmatic 

approach may even depend on a black box, for example having an artificial intelligence 

system make final practical recommendations, as in the case of Watson for Oncology 

making recommendations for breast cancer management (45). Fifth, patient centeredness 

should allow patients to express their real needs and influence research to address what they 

do care about mostly in their lives and about their health. Sixth, value for money needs to be 

secured, and this can be a great challenge for expensive BGD technologies. Despite a 

decreasing cost per unit of testing, massive testing may result in a waste of funds and the 

adverse consequences of unnecessary or misleading information may cost even more. 

Seventh, feasibility should be assessed on a case-by-case basis, as many big data initiatives 

may be too ambitious. Even if they can get off the ground, there may not be sufficient 

resources for their subsequent maintenance. Finally, transparency should document that 

BGD and other data are shared and possible to verify, re-use and integrate and that they are 

as accurate and unbiased as possible (46). Genomics has a strong tradition at the forefront of 

data sharing. Nevertheless, as BGD become universal, issues of privacy also need to be 

handled carefully and new regulatory requirements may arise (47). Overall, while BGD hold 

a lot of promise for transforming medicine, we will need to generate evidence that this 

transformation can be evidence based. The combination of EBM and BGD may allow 

reaping maximum benefits.
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